Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Uncertainty propagation methods are used to estimate the distribution of model outputs resulting from a set of uncertain model outputs. There are a number of uncertainty propagation methods available in literature. This paper compares six non-intrusive uncertainty propagation methods, Latin Hypercube Sampling, Full Factorial Integration, Univariate Dimension Reduction, Halton series, Sobol series, and Polynomial Chaos Expansion, in terms of their efficiency for estimating the first four moments of the output distribution using computational experiments. The results suggest employing FFNI if there are few uncertain inputs, up to three. Uncertainty propagation methods that utilize Halton and Sobol series are found to be robust for estimating output moments as the number of uncertain inputs increased. In general, higher order polynomial chaos expansion approximations (3rd-5th order) obtained accurate estimates of model outputs with fewer model evaluations.more » « less
-
Abstract This study employed machine learning (ML) models to predict the cardiomyocyte (CM) content following differentiation of human induced pluripotent stem cells (hiPSCs) encapsulated in hydrogel microspheroids and to identify the main experimental variables affecting the CM yield. Understanding how to enhance CM generation using hiPSCs is critical in moving toward large‐scale production and implementing their use in developing therapeutic drugs and regenerative treatments. Cardiomyocyte production has entered a new era with improvements in the differentiation process. However, existing processes are not sufficiently robust for reliable CM manufacturing. Using ML techniques to correlate the initial, experimentally specified stem cell microenvironment's impact on cardiac differentiation could identify important process features. The initial tunable (controlled) input features for training ML models were extracted from 85 individual experiments. Subsets of the controlled input features were selected using feature selection and used for model construction. Random forests, Gaussian process, and support vector machines were employed as the ML models. The models were built to predict two classes of sufficient and insufficient for CM content on differentiation day 10. The best model predicted the sufficient class with an accuracy of 75% and a precision of 71%. The identified key features including post‐freeze passage number, media type, PF fibrinogen concentration, CHIR/S/V, axial ratio, and cell concentration provided insight into the significant experimental conditions. This study showed that we can extract information from the experiments and build predictive models that could enhance the cell production process by using ML techniques.more » « less
An official website of the United States government

Full Text Available